更新時間:2022-02-18 05:48:14作者:admin2
解答:解:(1)設等差數列{an}的公差為d,則∴a1+a3+a5=21,a2+a4+a6=27,∴3a3=21,3a4=27,∴a3=7,a4=9,∴d=2,∴an=a3+2(n-3)=2n+1,∴a1=3,∴4Sn=3bn-3,①n=1時,4S1=3b1-3,∴b1=-3,n≥2時,4Sn-1=3bn-1-3②,∴①-②整理得bn=-3bn-1,∴數列{bn}是以-3為首項,-3為公比的等比數列,∴bn=(-3)n;(2)cn=4bn+1bn-1=4+5(-3)n-1,n為奇數時,cn=4-53n+1,∵3n+1≥4,(n=1時取等號)∴114≤4-53n+1<4,n為偶數時,cn=4+53n-1,∵3n-1≥8,(n=2時取等號)∴4<4+53n-1≤378,綜上,114≤cn≤378,cn≠4,∴cn=4bn+1bn-1的最小值114,最大值是378.